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Abstract. An analytic solution is obtained for a certain non-linear one-dimensional 
Boltzmann equation describing the temporal relaxation to equilibrium of a system of 
particles, and its general features are elucidated. A solution is also found for the 
corresponding linearised problem and for two BGK models, one with the correct 
energy-dependent and the other with a mean energy-independent relaxation time. On 
comparing these with the solution of the non-linear equation, the main conclusions 
reached are that the accuracy of the linearised equation is superior to that of the models, 
even for large displacements from equilibrium, and that the gain in accuracy of the 
energy-dependent BGK model over the energy-independent one may well be offset by the 
additional computational work involved in using the former. Finally, a calculation of the 
successive time derivatives of the entropy, based on the exact non-linear equation, show 
that these alternate in sign, at least up to the tenth derivative. 

1. Introduction 

The main difficulties encountered in solving the non-linear Boltzmann equation are 
largely due to the complex mathematical nature of the collision term. The detailed 
form of this term depends on the precise nature of the intermolecular potential, but in 
all cases, the integrand of this term has two basic properties: (i) a particular type of 
non-linearity in the distribution function involved; and (ii) a mathematical form 
corresponding to the conservation of certain physical quantities (number, energy and 
momentum) in a collision. Krook and Wu (1976) were able to solve the equation for 
the case of a particular collision kernel and special boundary conditions, and Truesdell 
(1956) obtained an exact solution for a special shear flow problem. However, no 
analytic results have been obtained for the general time-dependent equation. It was 
therefore considered worthwhile to obtain an analytic solution to a problem, which 
while substantially simpler than the real problem, nevertheless embodies the above 
two basic properties of the true collision operator. The main simplification we employ 
is to consider a one-dimensional problem corresponding to the relaxation to equili- 
brium of a homogeneous molecular distribution initially in some arbitrary state. For 
this one-dimensional situation it is impossible to obtain a change in the number of 
molecules with a particular energy if both energy and momentum are conserved in 
collisions. We therefore dispense with conservation of momentum, and consider the 
situation where only number and energy are conserved. In order to define the 
problem uniquely it is necessary to specify the scattering kernel, and here we make the 
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obvious choice of taking a kernel which allows an analytic solution to be obtained. As 
we shall see in 8 2, this property holds if the kernel is a constant, and our collision 
operator may thus be considered as corresponding to a one-dimensional analogue of 
Maxwell molecules. It should be noted that in order to utilise the mathematical 
approach of 0 2, it is necessary to discretise the molecular energy states rather than 
allowing them to form a continuum. Finally we should mention that although the 
essential reasons for following our approach are those given above, one can neverthe- 
less conceive of a real physical system described by the one-dimensional Boltzmann 
equation (3) that we shall employ. Consider an assembly of identical polyatomic 
molecules whose vibrational energy levels are quantised in integer multiples of an 
energy quantum, E .  If an assembly of these molecules retains throughout a Maxwell 
equilibrium distribution in their velocities and if on collision they only exchange 
energy between their respective vibrational modes, then for a constant collision kernel 
our equation (3) will represent the decay to an equilibrium distribution of their 
vibrational energy states. 

Apart from the intrinsic interest in deriving an analytic solution to a non-linear 
Boltzmann equation, the results we obtain are also of value in assessing the accuracy 
of certain simplified equations which have been traditionally employed. For a system 
close to equilibrium the linearised Boltzmann equation is known to be valid, but in 
general no estimate can be readily made of the errors arising when this equation is 
used for large departures from equilibrium. For such large departures model equa- 
tions are often employed, the most popular being the BGK model?. This can be 
developed either with the correct velocity-dependent relaxation time or with an 
averaged (velocity-independent) relaxation time. In both cases, however, little is 
known about the error introduced by the use of the model. For the present non-linear 
collision operator we shall see that the linearised version and BGK models (with both 
velocity-dependent and velocity-independent relaxation times) may be readily 
formulated, and the consequent accuracies of three types of approximation may thus 
be estimated for different sets of initial conditions. 

Finally, we have examined for the present non-linear system the sign of successive 
time derivatives of the entropy S. It is known that for several isolated systems these 
derivatives alternate in sign; that is, 

(-1)’ dPS/dtP 6 0 

where 1 s p  6 M ,  and M may be finite or infinite (see Rouse and Simons 1976 for 
references to earlier work). Although the result (1) is known to hold for systems 
described by the linear Boltzmann equation with M = CO, it has only been shown to be 
true for one very specialised non-linear case with M = 4 (Rouse and Simons 1976). 
For our present one-dimensional system we have considered an initial situation 
drastically removed from equilibrium and have shown that the result (1) holds 
throughout the relaxation back to equilibrium with M = 10. 

The nature of the mathematical approach we follow for the solution of the basic 
non-linear equation (3) has some points in common with that used by Kac (1956). The 
basic aims and treatment of his paper are, however, very different from ours. 

+ In this paper we have considered only the original BGK model because of its relative simplicity. At the 
expense of a substantially greater amount of work the approach used here could be applied to the more 
sophisticated models discussed by Cercignani (1969). 
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2. The non-linear equation 

The non-linear Boltzmann equation for a spatially uniform gas relaxing to equilibrium 
can be expressed in the form 

where f p  =f(up) is the distribution function for molecules of velocity up and 
P(u, ul, u2, u3) is the interaction kernel. In accordance with the simplification given in 
the previous section, we proceed to consider the discrete one-dimensional analogue of 
equation (2) in which the energy of each molecule is given by ne where n is an integer 
( 2 1 )  and E is a unit of energy. The molecular state is considered to be specified by the 
energy alone, and so f=f(n, t )  gives the number of molecules with energy ne at time 1. 
We suppose energy to be conserved in interactions, and assume P to be a constant, 
which we take as unity. The time-dependent Boltzmann equation then takes the form 

where the sums are subject to the constraint n + nl = n2 + n3. Thus we obtain 

-- af(n)- 1 f ( n ~ n 3 ) - f ( n )  2 (n + n l -  lIf(n1). 
at n2.n3 n l = l  

nZ+n3>n 

(4) 

Now the total number of molecules N, and their total energy EE remain constant 
throughout the temporal development of the system, and so we have 

5 nf(n)=E.  
n = l  

On making use of equations (5) we find that equation (4) can be expressed in the form 

n2+n s n  
*)+ [(n - l ) N  + E ] f ( n )  = N2 - f(nzlf(n3). at nz,n3=1 

This equation will yield a unique solution describing the relaxation of the system to 
equilibriumt if supplemented by boundary conditions of the form 

f ( n ) =  g(n>  at t = 0 (1 s n sa). (7 ) 
Equation (6) can clearly be solved for successive values of n. Starting with n = 1 the 

second term on the right-hand side is zero and so a solution for f(1, t) may be found. 
Substituting this into the right-hand side for n = 2 allows a solution to be obtained for 
f(2, t) and so on for increasing values of n. We have, however, been able to obtain a 

t An H theorem may be readily formulated for equation (3) in the same way as for equation (2), showing 
that as t+m, the system must tend to an equilibrium state characterised by a Maxwell equilibrium 
distribution. 
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general solution of equation (6) of the form 
u + u s n  

u,u=o 
f(n, t )  = 1 cl") exp[-(uN + U E ) ~ ]  

where Cl"? is a constant (considered further below), and this we now proceed to 
prove. Assuming the form (8), we have 
n z + n p s n  

n2,n3= 1 
f(nZlf(n3) 

nZ+n3Sn u - s + u - w 4 n z  s + w 4 n j  

nz,n3=1 U-s,u-w=O s,w=O 

u + u S n  n - ( s + w )  n-n2 

u,u=O s=O w=O nz=(u+u) - (s+w)  n3=s+w 

= e  c 1 c~"-.~,,-,cI";' exp[-(uN + u ~ ) t ]  

= c f f  c 1 ~ F z : , ~ - ~ ~ j " , 3 )  exp[-(uN+ UE)~] (9) 

on changing the order of summations and defining Ch? = 0. Substituting from equa- 
tions (8) and (9) into (6) gives 

u,u=o 

u + u S n  U n - (s+w)  n - n  

u,u=O s=O w=O n2=(u+u) - (s+w)  n3=s+w 
= N 2 -  f 1 ~ l i " - 2 ? . , ~ - ~ ~ % )  exp[-(uN + u ~ ) t ]  

and by comparison of coefficients of exp[-(uN + uE)t],  we obtain 
x u  c;=o x n - ( s + w )  c ( n  ) (n, )  

(loa) 
nz=(u+u)-(s+ w ) x",J:+ w u 2s.u-  w c s w  ~ ' 6 u O a u O  

(n - U - l ) N  + (1 - u)E 
+ s = o  c g  = - 

(n  - l ) N + E  

for U # n - 1 and tr # 1. C??I,~ remains as an arbitrary constant. The treatment 
leading to equation (loa) remains valid as long as (n - U - l ) N  + (1 - u)E # 0 for all 
U # n - 1 and U # 1. If, however, E / N  is a rational fraction so that (n -U - 1)N+ 
(1 -u)E = 0 for some u = a  and u = b with a it n - 1 and b # 1, then it may be shown 
that equation (8) still holds with Ck' given by equation (loa) for U # a, U # b, while 
C$) takes the form 

It is clear that the above solution (8) combined with the recurrence relations (10)  
gives a unique result for f (n ,  t ) ,  apart from the single arbitrary coefficient C??l,l 
which exists for each n. This coefficient may therefore be chosen to satisfy the 
boundary conditions (7). For specified g(n), the general procedure is first to calculate 
N and E from equations (5 ) ,  letting f ( n )  = g(n).  Taking n = 1, the set of coefficients 
CL:) are then readily obtained from equations (10) for (U, U)# (0, l), making use of 
Cb? = 0. The boundary condition (7) applied to n = 1 allows C&) to be obtained. The 
procedure is then repeated for successive values of n. It is clear that apart from the 
initial calculation of N and E, the solution thus obtained for f(n, t )  is independent of 
g(m) for m > n. 

Finally, we consider the form that f ( n ,  t )  takes as t + 00. It is clear from equation 
(8) that f(n, 03) = C%) and the form for f ( n ,  00) could thus be obtained from equations 
(10). A quicker way, however, is through the standard H theorem approach, by which 
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it is readily shown from equation (3) that, corresponding to conservation of number 
and energy, the Maxwell equilibrium distribution is given by 

f(n, CO) = upn-' (1 la )  

for constants a and p. These two constants are in turn determined by equations ( 5 )  
applied to f(n, CO); these give 

a = N2/E and p = 1 - (N/E). (1lb)  

3. The linearised equation 

We consider here the situation when f(n, t )  is close to the equilibrium distribution 
fo(n) (=f(n, CO) as given by equation (11)). We let 

f(n9 t )= fo (n ) (1+4h  t)) (12) 

and substituting into equation (6), obtain 

2 r+s=Zn 

a4(n)+ [(n - l ) N  + E]4(n)  = -- fo(r)fo(s)q!J(r). 
a t  f o b )  r , s = l  

Here we have neglected terms quadratic in C$ and have utilised the fact that fo(n) 
satisfies equation (6) with af/at = 0. We proceed to show that a solution of equation 
(13) can be found of the form 

n-1 

r = O  
4(n, t )  = 1 D',"' exp[-(E + rN)t] 

for constant Or'. On substituting from equation (14) into equation (13) and changing 
the order of summations, it is found that 

n-2 n-1 N s-n n-1 

(n - r -  1)ND?' exp(-rNt) = 2 N  1 1 [ 1 - (1 ---) ID?) exp(-rNt). 
r = O  r = O  s = r + l  

Hence by comparison of the coefficients of exp(-rNt) we obtain 

for 0 s r s n - 2, while D',"ll is arbitrary. A unique solution is obtained for 4(n,  t )  if 
the Boltzmann equation is supplemented with boundary conditions of the form 

4 h  o>=  W ) .  (16) 

Starting with n = 1, the above discussion shows that Dg' is arbitrary and may there- 
fore be determined by equation (16) with n = 1. For successively higher values of n, 
Dp) is obtained from equation (15) for O G r S n  -2, while D',"ll is found from the 
relevant boundary condition (16). As in the non-linear case, it is clear that the form 
obtained for C$(n, t )  is independent of O(m) for m > n. 
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4. The BGK model 

Following Simons (1972), we proceed to derive the BGK model corresponding to the 
collision operator in equation (3) by taking 

where the sums are subject to the constraint n +nl = n2+n3.  Here F(n,)(p = 1 , 2 , 3 )  
represents an equilibrium distribution of the form ( 1  l ) ,  characterised by as yet 
undetermined parameters N ’  and E’;  that is 

where in general both N ‘  and E’ depend on t. The right-hand side of equation (17) 
will be zero if f(n) = F(n) ,  and so equation (17) may be expressed as 

where 
n + n , - 1  

v =  C 1 F ( n l ) = ( n - l ) N ’ + E ’ .  
n l = l  n z = l  

The parameters N’( t )  and E’(r) are now determined by the conditions that the model 
(19) should overall conserve number and energy. This corresponds to 

m m f vF(n)= 1 v f (n)  and f nvF(n)= 1 nvf(n),  ( 2 1 )  
n = l  n = l  n = l  n = l  

and substitution into these equations from equations (18)  and (20) gives 

NN’-  N‘+2N‘E’ -  N’E - E’N = 0 (22a) 
and 

m 

E ’ ~ - N ~ E ~ + E N ’ - E E ’ =  N I  1 n2(f(n)+(n)). (22b) 
n = l  

Equations (19) and (20), with N’ and E’ subject to the constraints ( 2 2 )  for all t, give 
the BGK model for the present situation. 

A considerable simplification is achieved in the use of the BGK model if U can be 
taken as independent of n. For such a v it is seen from equations ( 2 1 )  and ( 5 )  that 

N ’  = N and E’ = E .  ( 2 3 )  

We can obtain a v of this form by averaging the above v (equation (20)) over all n, 
using f(n) as a weighting factor. That is, we take 

from equations ( 5 )  and (23). It is clear that F (unlike v) is now independent of 1, and 
the solution of equation (19) embodying the boundary conditions (7)  can be explicitly 
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obtained in the form 

where now F ( n )  = f ( n ,  CO), given by equation (11). It is clear that in this case f ( n )  is 
independent of g (m)  for m # n. 

Finally, it should be noted that in the last case the relaxation of f ( n )  to equilibrium 
is of necessity a monotonic variation, while in the three previous cases considered 
there exists the possibility of oscillatory behaviour in time. 

5. Evaluation of the solutions 

We proceed to apply the methods developed in the preceding three sections to three 
sets of initial conditions and in each case we consider the decay of f ( n )  to equilibrium 
for 1 4  n s 12. The sets of boundary conditions taken are (see equation (7)) 

constant (1 6 n 6 12) 
(n  > 12) Condition A : g ( n )  = ( 

0 (n  f 5,6)  Condition B : 
g(6)/g(5)= 1.33f0.67. 

This corresponds to placing the molecules initially in a narrow distribution well away 
from equilibrium. We occupy two states rather than one to avoid the anomalous 
situation leading to equation ( lob) ,  and we choose this occupied region to be fairly 
central in order to examine the variation in the ‘wings’ on both sides of the initially 
occupied states. 

N1 n-l N ;  N2 
ConditionC: g ( n ) s  - 1-- +- 1-- [E:( E,) E2( E) 1 

This corresponds to a mixture of two very different equilibrium distributions. 
For each set of boundary conditions we calculate the solution of: 
( a )  The exact non-linear equation as given by equations (8). The coefficients Ck) 

were first evaluated by computer from equations ( l o a )  and the values of f ( n ,  t )  for 
various values of t were then computed from equation (8). 

( b )  The linearised equation as given by equation (14), for various values of t, using 
coefficients D?) computed from the recurrence relation (1 5 ) .  

( c )  The ‘constant Y’ BGK model as given by equation ( 2 5 )  for various values of t. 
( d )  The ‘variable Y’ BGK model as given by the solution of equation (19) subject to 

the constraints (22). This case necessitated the use of a numerical integration tech- 
nique outlined in the appendix. 

The results of these computations are exhibited graphically in figure 1 and the 
graphs correspond respectively to the above boundary conditions A, B and C. In 
these graphs we take as abcissa a dimensionless time variable t* = Ct with C given by 
equation (24), and consider 0 d t* C 10. We determine the above boundary conditions 
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Figure 1. f(n, r * )  against r*  for various n. The figure in brackets is (n). - , non- 
linear; - - - -, linear; --, 'constant v' BGK model; ---, 'variable U' BGK model. (a) ,  
( 6 )  and (c) correspond respectively to the three sets of initial conditions A, B and C 
specified in the text. 

A,  B and C uniquely by the requirement that 

which is equivalent to N = 1 (see equation @a)) ,  and the ordinate in each figure then 
gives the correspondingf(n, t*)t. Values of n = 3 , 5 , 7 , 9 ,  12 are shown in each graph, 
and for each such value of n we depict the forms for f given by the solution of the four 
equations (a ) ,  (b),  (c), ( d )  given above. In figure 2 we show f as a function of n for 
various values of t* corresponding to the exact solution of the non-linear equation, 
and for the three sets of boundary conditions A,  B and C. 

We consider first the form of the exact solution of the non-linear equation as a 
function of time for various n. It is clear from figure 1 that in the majority of cases 
f(n, t*) relaxes back monotonically from its initial value to its equilibrium value, but in 
some cases it passes through a maximum or minimum before attaining its final value. 
However, in no case has more than one such stationary value been found. The time 
for f(n, t*) to effectively reach its equilibrium value varies to some extent with n and 
with the detailed boundary conditions, but is typically given by t* - 5 .  

If we now compare the solution of the exact non-linear equation with the three 
approximations (b),  (c) and (d) given above, perhaps the most surprising result is that 
in virtually all cases the solution of the linearised equation gives the best approxima- 
tion, even when the condition IC$[<< 1 (see equation (12)), which is usually assumed to 
be necessary for its validity, is not satisfied. As regards the two BGK approximations, it 
is clear that the 'constant v' BGK model cannot be a good approximation when a 
stationary value exists in f(t*) since, as mentioned earlier, this approximation must 
yield a monotonic return to equilibrium. This is borne out by figure 1 where the 
'constant Y' BGK is always the worst approximation in cases where a stationary value 

t If boundary conditions of the above form A, B and C are considered, but with XF=p=l g(n) = a, it is readily 
shown from equation (3) that the corresponding solution fa (n ,  r * )  is given by fa(n,  r * )  = af(n,  at*). 
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I01 IC1 

Figure 2. f(n, t*) against n for various t*. 0, t* = 0; A, t* = 0.5; V, t* = 1.0; 0, t* = 1.5; 
X ,  t* = 3; 0, t* = 10. f(n, t*)  represents the solution of the non-linear equation for all 
curves. (a) ,  ( b )  and (c) correspond respectively to the three sets of initial conditions A, B 
and C. 

occurs. In other cases, however, comparison of the two BGK models shows that 
neither is consistently closer to the true result. In order, therefore, to make some kind 
of quantitative comparison of their relative accuracy, the following two quantities 
were calculated: 

Here f is the solution of the exact non-linear problem, while fu and fF are respectively 
the solutions for the ‘variable U’ and ‘constant v’ BGK models. The values of A(r*) 
and B(t*)  were computed for 1 S t * S  10, for the three sets of boundary conditions 
and the results compared. In all cases it was found that A(t*)< B(r*) with A / B  lying 
in the range 0.3-1.0 in virtually all cases. This suggests that on the whole the ‘variable 
v’ model is better than the ‘constant v’ model as indeed would be expected from the 
way in which they were derived. However the loss in accuracy in using the ‘constant v’ 
model is not great and these inaccuracies may well be offset by the fact that the 
computations involved with the ‘constant v’ model are considerably simpler than 
those arising with the ‘variable v’ model. If these results remain true in a real 
three-dimensional interaction problem, they will tend to support the approach of the 
majority of workers in the field of kinetic theory, who have assumed a ‘constant v’ 
BGK model without considering the errors introduced by neglecting the velocity 
dependence of v. 

In view of the remarks at the beginning of the previous paragraph, it would clearly 
be of interest to compare the solutions of the non-linear and linearised problems in a 
real three-dimensional situation in order to examine whether the solution of the 
linearised problem is a reasonable approximation even when the system is far from 
equilibrium. 
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6. Entropy production 

The standard definition of entropy S applied to our system gives 
m 

n = l  
S = - k  f(n)lnf(n), (26) 

and according to the discussion in the introduction, we are interested in examining the 
sign of successive time derivatives of S.  By direct differentiation of equation (26) 
expressions for dpS/dtP can be obtained in terms of d"f/dt" (1 S m S p ) ,  but these 
expressions become rapidly more complicated as p increases. In view of this it was 
decided to consider the range 1 S p  S 10 for which the sign of S") (= dPS/dtP) can be 
obtained by plotting graphs of S(') as a function of t* for p = 2, 5 ,  8. 

In order to define the situation uniquely it is necessary to specify g(n)-the value 
of f(n) at t* = 0. Various considerations motivate the choice for this, and we now 
proceed to consider these. Since it is known that the alternating hypothesis (1) holds 
when the linearised equation is valid close to equilibrium (Simons 1971), it is clear 
that to subject this hypothesis to a stiff test the initial distribution should be well away 
from eqGilibrium. We therefore put the majority of the molecules into two states 
which are chosen to correspond to n = 2 and 3 in order to minimise the contribution to 
S(')of states with n > 12, for which it cannot be computed. However we cannot leave 
all other states completely unoccupied since this would lead to S(') becoming infinite 
at t = 0 due to factors of f(n) in the denominator of the expression for S"). Since we 
also wish to minimise the contribution to S") arising from states with n > 12, it seems 
reasonable to take for n>12 ,  g ( n )  equal to the final equilibrium value of f ( n )  at 
t* = CO, as this should tend to minimise the changes in f(n) as t* increases. In order to 
check that these changes are indeed small this 'equilibrium value' for g(n )  was used 
for n L 9 so that the variation in f(n) for 9 6 n S 12 could be directly examined. To 
avoid S(') becoming infinite we take g ( n ) =  low4 for n = 1, 4, 5 ,  6, 7, 8 and having 
chosen N = 1, E = 2.4, g ( n )  is then specified uniquely for all n. 

Using the above boundary conditions, the values of S(')(t*) for p = 2, 5 ,  8 were 
computed for 0 S t* S 2, the required values of d'"f(n, t*)/dt*" being obtained by 
direct differentiation of the exponential function in equation (8). As explained above, 
the sums over n arising from equation (26) with range l-CO were replaced by range 
1-12 and the contributions to these sums from n = 9, 10, 11, 12 were separately 
calculated. Figure 3 shows the resulting graphs of -S'*)/k,  S'"/k and -S@' /k  for 
t* S 2. The decrease in value of each of these functions at t* = 2 compared with its 
value at t* = 0 suggests that computation beyond t* = 2 is unnecessary. This is borne 
out by the closeness of the graphs in figure 1 for the non-linear and linear cases for 
t* > 2. In all cases it was found that the contribution to S") arising from n = 12 was 
less than 2% of the total, and one might reasonably suppose that we are therefore 
justified in neglecting the contributions from larger values of n as these would be 
expected to become smaller as n increases, due to the particular state becoming 
progressively more immersed in equilibrium surroundings. This is supported by the 
smoothness of the graphs which would not have occurred if a substantial proportion of 
S"', randomly varying, had been neglected. 

Considering now the functions shown in the graphs of figure 3, it is clear that each 
is non-negative while its first and second derivatives are respectively non-positive and 
non-negative. The truth of equation (1) for the present situation has thus been 
demonstrated for 1 s p  6 10. Finally it should be noted that the extremely large (but 
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Figure 3. z against t * .  -, z=-Io-*s'*'/~; ----, z=~o-~s'~'/~; --, Z =  
- 10-10S'8'/k. 

finite) values of the given functions for very small t* prevent them being shown in the 
above figure, but analysis of the numerical data shows that the above conclusion of the 
validity of equation (1) holds for values of t* down to zero. 
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Appendix 

We consider here the solution of equation (19), with F(n, t )  and v(n, t )  given respec- 
tively by equations (18) and (20),  subject to the constraints (22)  which effectively 
define N'( t )  and E'(t). The complex nature of these constraints prevents the use of an 
analytic approach, and we therefore employ a numerical technique based on the result 

f ( n ,  t + S t ) = ( f ( n ,  t ) -F(n ,  t))exp(-v(n, t)St)+F(n, t )  (A.1) 
which follows from equation (19). Starting with t = 0, f ( n ,  t )  was calculated from 
equation (A.l) for successive increases of St in t. At each stage E' and N' were 
obtained numerically from the simultaneous solution of equations (22),  and these 
values were then used in the next stage to specify F ( n )  and v from equations (18) and 
(20).  In the solution of equatiQns (22),  the infinite upper limit in the sum on the 
right-hand side of equation (22b)  was approximated by an integer I. The values of I 
and St were then independently doubled and halved respectively until the cor- 
responding change in f ( n ,  t )  was less than 1% for all n and t .  
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